In this lesson, you will learn how to create a vector index on existing data.
-
Create an Embeddings model instance
-
Create a Vector Store on all
Talk
nodes using thetitle
anddescription
properties. Save the embedding to theembedding
property -
Grab a coffee and wait… ☕️
Solution
typescript
import { Neo4jVectorStore } from "@langchain/community/vectorstores/neo4j_vector";
import { OpenAIEmbeddings } from "@langchain/openai";
import { config } from "dotenv";
async function main() {
config({ path: "./.env.local" });
const embeddings = new OpenAIEmbeddings({
openAIApiKey: process.env.OPEN_AI_API_KEY,
});
const store = await Neo4jVectorStore.fromExistingGraph(embeddings, {
url: process.env.NEO4J_URI,
username: process.env.NEO4J_USERNAME,
password: process.env.NEO4J_PASSWORD,
nodeLabel: "Talk",
textNodeProperties: ["title", "description"],
indexName: "talk_embeddings_openai",
embeddingNodeProperty: "embedding",
});
await store.close();
}
main();
Verify Challenge
Verifying the Test
Once you have executed the code, click the Verify button and we will check that the code has been executed successfully.
Summary
Well done!