Vectors

In this lesson, you will learn how to create a vector index on existing data.

  1. Create an Embeddings model instance

  2. Create a Vector Store on all Talk nodes using the title and description properties. Save the embedding to the embedding property

  3. Grab a coffee and wait…​ ☕️

Solution
typescript
import { Neo4jVectorStore } from "@langchain/community/vectorstores/neo4j_vector";
import { OpenAIEmbeddings } from "@langchain/openai";
import { config } from "dotenv";

async function main() {

    config({ path: "./.env.local" });

    const embeddings = new OpenAIEmbeddings({
      openAIApiKey: process.env.OPEN_AI_API_KEY,
    });

    const store = await Neo4jVectorStore.fromExistingGraph(embeddings, {
      url: process.env.NEO4J_URI,
      username: process.env.NEO4J_USERNAME,
      password: process.env.NEO4J_PASSWORD,
      nodeLabel: "Talk",
      textNodeProperties: ["title", "description"],
      indexName: "talk_embeddings_openai",
      embeddingNodeProperty: "embedding",
    });

    await store.close();
  }

  main();

Verify Challenge

Verifying the Test

Once you have executed the code, click the Verify button and we will check that the code has been executed successfully.

Summary

Well done!

Chatbot

Hi, I am an Educational Learning Assistant for Intelligent Network Exploration. You can call me E.L.A.I.N.E.

How can I help you today?