To pass this lesson, you will need to use LangChain Expression Language (LCEL) to create a RunnableSequence
that:
-
Replaces the input values in a Prompt Template
-
Sends the formatted prompt to an LLM
-
Parses the response as a string
Update the call()
function in the src/modules/agent/index.ts
to integrate the chain into the Chatbot application.
Solution
typescript
import { ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate } from "@langchain/core/prompts";
import { ChatOpenAI } from "@langchain/openai";
import { StringOutputParser } from "@langchain/core/output_parsers";
import { RunnableSequence } from "@langchain/core/runnables";
export async function call(
message: string,
sessionId: string
): Promise<string> {
// 1. create a prompt template
const prompt = ChatPromptTemplate.fromMessages([
SystemMessagePromptTemplate.fromTemplate(
`You are a helpful assistant helping users with queries
about the CityJS Athens conference.
Answer the user's question to the best of your ability.
If you do not know the answer, just say you don't know.
`
),
HumanMessagePromptTemplate.fromTemplate(`Question: {message}`),
]);
// 2. choose an LLM
const llm = new ChatOpenAI({
openAIApiKey: process.env.OPENAI_API_KEY,
temperature: 0.1,
});
// 3. parse the response
const parser = new StringOutputParser();
// 4. runnable sequence (LCEL)
const chain = RunnableSequence.from<RunInput, string>([
prompt,
llm,
new StringOutputParser(),
]);
// 5. invoke the chain
const output = await chain.invoke(
{ message },
);
return output;
}
You can run the application using:
sh
npm run dev
Summary
Good job, you’re ready for the next challenge.